
Console Data at 15 Hz
Real-time network communications

Mon, Oct 12, 1998

Introduction
The Acnet data acquisition protocol, known as RETDAT, supports data requests 

that specify data return rates in units of 15 Hz cycles, the natural cycle rate of the 
Fermilab Linac and Booster accelerators, which operate at 15 Hz, synchronized to the 60 
Hz power line frequency. The Linac beam pulse width is only about 50 µs, so that the 
duty cycle of the beam is less than 0.1%. Sample-and-hold circuits are used to capture 
readings of pulsed signals at the same moment within the beam pulse throughout the 
Linac. A requirement for successful Linac tuning is that any selected Linac device data 
be made available to an operator at 15 Hz. On each 15 Hz cycle, Linac beam may be 
present, or it may not, depending upon the clock event system and the health of the 
preaccelerator and Linac hardware.

Fast Time Plot protocol
One common tuning display is called the Fast Time Plot, which uses the Acnet 

protocol FTPMAN, designed to carry time-stamped device data values from possibly 
multiple front end sources. The FTPMAN client software combines the separate streams 
of data according to the time stamps and displays the data graphically in a time-
correlated fashion. One commonly tunes the Linac by displaying up to 4 beam-related 
signals plotted on the y-axis against a single controllable parameter, such as a transport 
line magnet current, plotted on the x-axis. In principle, as long as all the reply records 
reach the console Vax, one can expect all the data to be plotted. 

In practice, however, it takes a carefully coordinated effort to achieve this. All Linac 
data source nodes operate in synchronism, each beginning its 15 Hz execution by the 
same triggering interrupt signal. Each node performs its cyclic activities at the same 
time. These begin with the Update task, which updates the local data pool with fresh 
readings from the hardware, executes all enabled "local applications," and prepares any 
replies that are due (on that cycle) to be delivered to requester nodes that have 
previously initiated data requests that demand periodic replies.

In fact, the synchronism situation is slightly more complex, in that Vax consoles access 
Linac data indirectly through a data server node, in order to reduce the number of 
network messages that must be accepted by the console computer. Using a server node 
places an extra condition on 15 Hz reply data delivery. The replies from the front ends 
must be received by the server node before it can forward a suitable composite reply to 
the console. The Linac server nodes operate on a deadline basis. All replies must be 
received by a fixed deadline time within the 15 Hz cycle, because at that time, the 
composite replies are delivered to requesting nodes. This deadline time has 
traditionally been 40 ms past the start of the cycle. Because of heavily loaded conditions 
that have recently been observed in Linac nodes, this deadline has been extended to 56 
ms, allowing more time for the individual Linac nodes to deliver their replies to the 
server nodes. (Actually these nodes obtain their I/O indirectly, via a Smart Rack 
Monitor, or SRM, via arcnet network hardware. Only after receiving the raw data from 
the SRMs can the data pool be updated, local applications run, and replies to active 
requests queued to the network.)



Acnet data request protocol
Aside from the Fast Time Plot method of data delivery to consoles for plotting, 

there is the more usual method of data delivery via the RETDAT protocol, in which 
replies received from either of the two Linac server nodes are placed into a data pool in 
the console computer. Console applications periodically poll the data pool. If an 
application needs to collect 15 Hz data, it must schedule itself to run at a minimum rate 
of 15 Hz, in order to be sure that it has a chance to sample all 15 Hz data that is found in 
the data pool. But the situation is a bit worse than that, because the Vax operates 
asynchronously with the accelerator 15 Hz operation. This means that an application 
must check more often than every 66 ms, because the actual reply message arrival times 
can exhibit some jitter at 15 Hz. One cycle's reply might arrive and be processed by the 
Data Pool Manager either a few ms late or a few ms early. 

For Vax applications, the VMS scheduler service is invoked to request 66.6 ms periodic 
activation of the application. But because the scheduler only operates with 10 ms 
resolution, this means that the application will see ms delays between successive 
executions of 60, 70, 70, etc, in order to effect an average of 66.6 ms. Even if the front end 
and network hierarchy can deliver replies separated by a constant 66.6 ms, with no 
synchronization, it is possible for two successive replies to occur between two 
successive application executions. Allowing for a bit of jitter in the periodic reply arrival 
times, the chance for this happening now and again is even greater. As a way around 
this for an individual application, one could have it schedule itself for 60 ms periodic 
scheduling, or even less, and ignore the data if it is accompanied by "stale" status. This 
should give the application a good chance of sampling all 15 Hz data replies via the 
data pool.

One popular display application used for Linac tuning shows readings of about 50 
beam toroid and beam loss monitor signals, all updated graphically at 15 Hz. This 
display has been observed to exhibit missing beam pulses. The current cycle's data 
points shown are displayed in yellow, with all previously plotted points displayed in 
blue. Thus, one can view what values occurred, with highlighting of those occurring at 
the moment. As a result of analyzing some recent timing measurements made by Jim 
Smedinghoff, changes were made in this application to improve its performance. 
Whereas the previous version of the program saved the data values from two 
successive cycles in order to deliver them to the display hardware together every other 
cycle, the new version plots the data every 15 Hz cycle. The technique of plotting two 
sets of data at once—presumably to reduce plotting overhead—was responsible for the 
display to seemingly miss plotting every other beam cycles, at times when beam cycles 
occurred an odd number of 15 Hz cycles apart, as occurs for a beam pulse rate of 3 Hz, 
for example. (The plotting is actually done on an x-terminal, so plotting commands are 
delivered via the network.) When the call is made to poll the data pool for the latest 
readings, a check is made that none was updated—via a high-priority reply 
message—while the entire set of beam data values were being sampled. If an update 
occurred, then the call is repeated to sample the data pool. This has the effect of 
insuring that all data collected to be plotted at one time is time-correlated, as all of these 
beam-related signals are passed through a single Linac data server node.

Console Data at 15 Hz p. 2



Commentary
What are we asking for here, when we ask for 15 Hz data to be displayed on a 

console? Not only must all the data replies be received and processed, but it is also 
important to deliver the graphics update in a timely manner. Ideally, the graphical 
display should visually appear to be updated at 15 Hz. It would not be adequate to 
have two or more 15 Hz cycles worth of data to be accumulated and then blasted onto 
the graphic screen in a flash. In this modern era of video displayed through a web 
browser, it would seem not too much to request that 15 Hz beam data be displayed on a 
controls console of the world's highest energy particle accelerator. 

It is not too much to expect to have 15 Hz data displayed in a timely manner, but what 
method should be designed to make it happen? Perhaps the data pool paradigm in a 
Vax console that runs applications asynchronously is not adequate to the task. If not, 
then what is?

Page applications in Linac nodes
A suite of page-style applications is available for use in Linac front end nodes. 

Such applications operate at 15 Hz, in synchronism with the rest of that front end's 
operation. Because of this synchronism, the data pool paradigm works. An application 
knows that it can always sample any data from the data pool at 15 Hz without missing 
any cycle's data. Without such synchronism, the application would not be any better off 
than a Vax console. Synchronous operation is the key that makes 15 Hz data acquisition 
work successfully via a data pool.

How does EPICS do it?
In the EPICS control system, "monitors" are used to deliver time-stamped data 

values to console nodes when the values change. When the front end performs record 
processing to access the I/O, a check is made to see whether the engineering units value 
falls outside a database-specified deadband. If it does, then the value is queued for 
delivery via the TCP-based Channel Access communications protocol to all client nodes 
interested in that data. A console user can request that a callback function be invoked 
when a new data value arrives.

Since the "monitor" results are queued, all interesting data value changes are passed up 
to the user's application via the callback function, and the user should not miss any 
data. (There is no data pool mechanism unless the user chooses to create one for his 
own program. Some user applications may be designed to work exactly this way, with a 
display portion of the application operating at some user-friendly rate, sampling from 
such an application data pool.) It will still be necessary, however, to analyze the data 
points in terms of the associated time-stamps to come up with time-correlated data 
values for plotting.

SUN Data Request Support
Classic protocol support was implemented for the Sun workstations that were 

used with the Linac systems, completely independent from Acnet. The Sun always uses 
a server node to satisfy a request. This means that all the reply data for a given data 
request arrives in the same datagram. (This is the same situation as exists for the Linac 
beam signals example above.) The application waits for the data reply, processes the 

Console Data at 15 Hz p. 3



data, then returns to wait again. But the replies are queued, so that in case the 
application is slow, it will have a chance to "catch up" when it is free. There is no data 
pool logic used. Queuing allows the application to see all of the 15 Hz data without 
worrying about reply jitter.

Future Acnet design
The Controls Department software staff is currently making plans for the future 

of Acnet. Will the collection and display of 15 Hz data be a requirement that will be 
supported? If it is, how could it work?

According to my present understanding, which admittedly may be incomplete, the 
architecture of the new control system is based upon a new layer of server computers 
called Data Acquisition Engines, or DAEs. Each DAE connects to 5–6 front ends. The 
console computers will run Java code that communicates with the DAEs that also execute 
Java code. This system will run more slowly that the current system, both because there 
is an extra layer and also because the interpreted Java code runs more slowly than 
compiled C code, say. It is difficult to see a priori how this architecture will help deliver 
reliable 15 Hz data to a host application.

The DAEs will be designed to consolidate all device requests (for those front ends they 
serve) on behalf of all host clients. To do this, they will support a data pool, probably 
analogous to the current Vax console DPM data pool. If a front end is designed to act as a 
server, à la Linac data server, however, the DAE data pool will be updated for all clients 
at once following reception of a reply message from the front end. When will the replies 
be delivered to a host client so that the data delivered is all measured on the same 15 Hz 
cycle? Since the DAEs are really PCs running NT, they are not real-time in design. But 
perhaps they can schedule 15 Hz execution with higher resolution than VMS. If the 
delivery is asynchronous with the replies from the front ends, some of the data may be 
missed, just as it can now be missed by Vax console applications that sample the data 
pool asynchronously.

The new system designers dismiss concerns for 15 Hz data by saying that the front ends 
will time stamp all data values they deliver in replies to the DAE. (Or perhaps the DAE 
will time-stamp the data?) When a console application collects the data values, it will 
then know when they were actually measured by the front end. But none of this assures 
that the data collected at one time by a host level application will be time stamped on 
the same 15 Hz cycle. Because of this, any host application that needs to work with 
time-correlated 15 Hz data will have a problem of sorting through the various data sets 
it receives on subsequent cycles hoping to find time stamps that match well enough to 
be presented together as correlated. 

Even with time stamps provided with each data value, the new system will not be able 
to reliably deliver all the 15 Hz data that the front ends deliver to the servers, unless 
some means of queuing front end replies, rather than pooling them, is provided.

Summary
In summary, it seems that data consolidation across front ends implies the use of 

a data pool in the DAEs. But if the DAEs are not synchronous with the 15 Hz accelerator 

Console Data at 15 Hz p. 4



cycle, then even if 15 Hz replies are reliably delivered to the DAEs, it is difficult to 
imagine how 15 Hz data can reliably be delivered to a console client. With both the DAEs 
and the host consoles asynchronous, the situation promises to be even worse than it is 
in the present Acnet system.

Consistent 15 Hz data acquisition can be done using a data pool scheme, but all 
computers in the hierarchy must be synchronous to make it work, which is likely not to 
be achievable with today's non-real-time operating systems. The other approach is a 
queued scheme, which should be realizable and should permit 15 Hz data to be reliably 
collected. The complication comes when the data sources span front ends.

Appendix—Example data acquisition of Linac beam signals
The application requests 15 Hz data readings of 55 devices, all of which are 

"sourced" from node062E, one of the two Linac nodes that are used as data servers. The 
reason for the quotes is that these beam-related signals aren't all connected directly to 
node062E, but also include signals from 5 other Linac nodes. Here is the actual 
distribution of signals from the various contributing nodes:

Node #signals
610 3
611 1
614 4
61E 4
62E 35
62F 8

The devices that are connected to node062E are dealt with in the same way as those 
from other nodes, in that replies are processed to update the composite reply message. 
The reply that includes the device readings from node062E has to be transmitted on the 
token ring network to itself, then received and processed. In a sense, it is more difficult 
for node062E to process its own data than it is to process data from other nodes, 
because it has to transmit a reply message to itself. (This was done to simplify the 
implementation of Acnet RETDAT protocol support.) It may have been wiser not to have 
any significant data directly connected to node062E, although during the time that the 
reply message to itself is built, node062E has no fresh replies from other nodes to 
process. During the time that this example beam display is active, for each 15 Hz cycle, 
node062E transmits 1 message to itself, receives and processes 6 reply messages, and 
transmits one composite reply to the console client. This adds up to 120 messages per 
second. When another console activates the same display, another 120 messages per 
second must be processed by node062E.

Multiple messages destined for the same target node are concatenated inside the same 
datagram, in order to reduce network handling overhead. As a result, for each 
additional console that requests the above set of 55 devices, the datagram sizes increase, 
but the number of datagrams remains constant, except for an additional one transmitted 
to the new console.

During a kind of "stress test," a total of 560 messages per second were being processed 

Console Data at 15 Hz p. 5



by node062E. The deadline time observed by node062E is 56 ms, by which time all 
replies from the individual Linac nodes must be received and processed. The time for 
processing all these replies was a total of 16 ms each 15 Hz cycle. Almost no extra time 
was available. It may be wise to limit the number of consoles displaying this data to a 
small number. With a CPU upgrade to a 68040 or something faster, we should be able to 
support rather more such displays.

New console support
Given a console architecture not synchronized with the 15 Hz accelerator, how 

can reliable 15 Hz data be collected so as not to miss cycles of data? Taking a cue from 
the EPICS architecture, suppose a console user could specify a callback function to be 
invoked when device data is updated. A callback function is invoked asynchronously 
with the application code. If the callback function must be short, it can place the new 
data in an application pool. But we need to be able to cause the application to run 
promptly while the data is still fresh and therefore not likely to soon be overwritten. 
Perhaps the application could be invoked with a reason of "new data arrival." But when 
there may be many such devices requested, how can it know which are new?

If there were a means of invoking an application promptly following reception of 
new 15 Hz data, it would give the application synchronous execution and therefore it 
could actually collect 15 Hz data reliably. Perhaps one could identify a single device for 
which an update would trigger an invocation of the application soon thereafter.

Console Data at 15 Hz p. 6


